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The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary 

angle to the graded interfacial zone is investigated in this paper. The interfacial zone is modeled 

as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus 

between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is 

based upon the use of the Fourier integral transform method and the coordinate transformations 

of basic field variables. The resulting Cauchy-type singular integral equation is solved 

numerically to provide the values of mode 111 stress intensity factors. A comprehensive 

parametric study is then presented of the influence of crack obliquity on the stress intensity 

factors for different crack size and locations and for different material combinations, in 

conjunction with the material nonhomogeneity within the graded interracial zone. 

Key Words :Bonded  Materials, Oblique Crack, Functionally Graded Materials, Nonhomo- 

geneous Interracial Zone, Singular Integral Equation, Mode 111 Stress Intensity 

Factors 

I. Introduction 

With the recent advances in the field of func- 

tionally graded materials, the utilization of such 

materials in the form of an interlayer for joining 

the dissimilar constituents has been suggested as 

one of the highly viable and effective applica- 

tions in engineering practice. As a result, several 

shortcomings arising from the stepwise property 

mismatch inherent in the conventional bonded or 

layered media could be alleviated (Lee and Erdo- 

gan, 1995). This is because the graded materials 

exhibit the relatively smooth spatial variations of 

thermomechanical properties, which can be trea- 

ted as nonhomogeneous solids on a continuum 

mechanics basis (Suresh and Mortensen, 1997). 

In the context of fracture mechanics, consider- 
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able attention has also been directed toward the 

investigation of effects of the material nonhomo- 

geneity on the near-tip field. For the material 

nonhomogeneity specified in terms of the exponen- 

tial variation of the elastic modulus, the inverse 

square-root character of the crack-tip field was 

proposed by Delale and Erdogan (1983). It has 

thereafter been confirmed that the above conjec- 

ture holds true for the general nonhomogeneous 

materials (Eischen, 1987 ; Schovanec and Walton, 

1988; Martin, 1992; Jin and Noda, 1994), pro- 

vided the elastic properties are simply continuous 

and piecewise differentiable near and at the crack 

tip. In particular, using the eigenfunction expan- 

sion, Eischen (1987) derived the near-tip field in 

a nonhomogeneous cracked body, demonstrating 

that the corresponding stress field possesses not 

only the square-root singularity, but also the 

same angular distributions around the crack tip as 

those in the homogeneous material. The evolution 

of the functionally graded materials thus appears 

to have resolved the issues of long-standing in- 

terest in the analytical studies of fracture mec- 

hanics, i.e., the oscillatory or the nonsquare-root 
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crack-tip singularities in piecewise homogeneous 

bonded media with the ideal interlace of zero thic- 

kness (Rice, 1988; Romeo and Ballarini, 1995). 

Subsequently, a series of benchmark solutions to 

some crack problems that entail graded nonho- 

mogeneous properties has been obtained by Erdo- 

gan and his coworkers, which is well documented 

in a review paper (Erdogan, 1995). One of the 

most recent contributions, among others, is at- 

tributable to Choi (2001) where the plane prob- 

lem of an arbitrarily oriented crack in bonded 

half-planes with a graded interfacial zone was 

considered. 

The objective of this paper is to investigate the 

anti-plane shear counterpart of the problem pre- 

viously considered by one of the authors (Choi, 

2001). It should now be mentioned that the anti-  

plane shear problems may have practical signifi- 

cance and applications in their own right in such 

situations as torsion or three-dimensional pro- 

blems in which the third fracture mode is separ- 

able. In the latter case, superimposed on the 

solution of the in-plane deformation problem, the 

solution supplemented in this paper would aid 

further in studying the general fracture problem 

in bonded materials with a graded interfacial 

zone. In addition, the problem under considera- 

tion serves the purpose of generalizing those 

considered by Erdogan et al. (1991) and Ozturk 

and Erdogan (1993) where only the case of a 

crack perpendicular to or lying along the no- 

minal interface with the interracial zone was ex- 

amined, respectively, under anti-plane shear load- 

ing. With the aforementioned in mind, it is wor- 

thwhile to report some new results regarding the 

anti-plane shear crack in bonded materials. 

To solve the proposed crack problem, the 

Fourier integral transform method is employed 

together with the coordinate transformations of 

pertinent field variables. As a result, formulation 

of the crack problem is reduced to an integral 

equation with a Cauchy-type singular kernel. The 

mode II1 stress intensity factors are defined and 

evaluated in terms of the solution to the integral 

equation. In the numerical results, the values of 

stress intensity factors are obtained as functions of 

various geometric and materials parameters of the 
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bonded media with a graded interfacial zone. To 

be noted is that a number of past studies for the 

anti-plane shear behavior of an inclined crack in 

the piecewise homogeneous bonded media can be 

found in literature (Bassani and Erdogan, 1979; 

Hwang et al., 1992; Kondo, 1992; Wang and 

Meguid, 1996; and the other references quoted 

therein). 

2. Problem Statement and 
Formulation 

Consider the anti-plane shear problem as sho- 

wn in Fig. 1, where the two dissimilar elastic 

half-planes are bonded through a graded inter- 

facial zone. The global geometric coordinates (x, 

y) and the local crack coordinates (xl, Yt) are 

used. The oblique crack of length 2c is directed 

along the line a < x 1 < b  and y l = 0 ,  with its incli- 

nation angle 0°_< 0--<90 ° measured counterclock- 

wise from the x-axis and its distance ddesignated 

from the interfacial zone. Let the shear moduli of 

the homogeneous halt-planes be given by/z;, j =  

1, 3, and the interracial zone be treated as a 

nonhomogeneous interlayer of thickness h. The 

shear modulus of the interlayer ,u2 (x) is assumed 

to follow an exponential variation as (Erdogan et 

al., 1991) 

' ( )  g~2(x) =/zle  ax, / ~ = - - ~ - l n  ~ -  (I) 

where the nonhomogeneity parameter t3 specifi- 

ed above fulfils the continuous transition of the 
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trary angle to the graded interfacial zone 
subjected to anti-plane shear loading 
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elastic properties from one half-plane to the oth- 
er. 

With w~(x, y) ,  j = l ,  2. 3, referring to the z-  
component of the displacement vector under anti- 
plane shear loading, the non-vanishing stress 
components and the governing equations are ex- 
pressed as 

awj &os r~z:/zs ~ - ,  r~z:,uj  ~ - ;  j = l .  2, 3 (2) 

V2ws+fl ~-xJ = 0  ; j =  1, 2, 3 (3) 

in which the numeric subscripts denote the con- 
stituent materials and /~¢:0.0 for the graded 
interlayer ( j=2 )  and f l=0.0  for the homogen- 
eous half-planes ( j = l ,  3). 

The interface and the regularity conditions are 
imposed in the (x, y) coordinate system as 

w~(0, y )=w~(0 ,  y) .  
w z ( - h ,  y ) = w ~ ( - h ,  y ) ; [ y  I < ~  (4a) 

rlXZ(0, y ) :  rzxz(0, y) ,  (4b) 
r 2 = ( - h ,  y ) = r 3 = ( - h ,  y ) ; l y  ]<co 

w~(+oo, y ) = 0 ,  
(4c) 

W3(--c¢, y) = 0 ;  l Y l< ~ 

and the mixed conditions on the plane of the 
crack are written in the (x~, y~) coordinate system 

rl~,~, (Xl, +0)  = rty,~,(x~, --0); 0 < x ~ < ~  (Sa) 

Wl (Xh -~-0) : Wl (Xl, - - 0 )  ; 
(5b) 

0 < x ~ < a ,  b < x ~ < ~  

r~y~,,(Xl, + 0 ) = f ( x ~ ) ;  a < X l < b  (5c) 

where f (x,) describes the arbitrary crack surface 
traction and the relations between the two coor- 
dinates, (x, y) and (xl, Yl), are given as 

x l : m x  + n y ,  y l = - - n x  + m y  (6a) 

r n=cos  0, n = s i n  0 (6b) 

Note that for the bonded media subjected to 
anti-plane shear stresses, ro and ~o, j = l ,  2, 3, 
applied sufficiently far away from the crack re- 
gion (see Fig. l), it is required that these stresses 
be prescribed in such a manner as to produce one 
of the constant strains at points remote from the 
crack as 
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r~(x) = r C e  ~x, r ~ = r ;  ~ (7) /zl 

and the superposition principle may stipulate the 
statically self-equilibrating traction on the crack 
surface, which is necessary for investigating the 
local crack-tip behavior. As a result, the equiva- 
lent crack surface traction in Eq. (5c) for the 
crack angle 0 is obtained as 

f ( x l ) = - - m r ~ + n r ~  ; a < x ~ < b  (8) 

For the homogeneous half-plane with an arbi- 
trarily oriented crack ( x > 0  and /3=0.0), the 

state of displacement and stresses can be ex- 
pressed as the sum of two parts in the (x, y) 
coordinates : 

Wl (x, y) : w~ 1~ (X, y) + wt z> (x, y) (9a) 

r.j(x, y) = .-"~,-~ (x. y) + r~, ~) (x, y);  
(9b) 

(i, j ) = ( x ,  z), (y, z) 

or in the (Xh Yt) coordinates: 

wl(xl .  Yl) :Wt l ) (Xh  Yl) +W[2)(Xl, Yl) (10a) 

r~ij(x~, y~) = .ij-~" (xl, y~) + ,~j-~) (Xl, y~); 
(lOb) 

( i , ) )  = (Xl, z~), (y~, zl) 

where the superscript (l) denotes the infinite 
plane with a crack and the superscript (2) is ['or 
the half-plane without the crack. 

In order to find the expressions for the field 
components in the homogeneous full-plane con- 
taining the crack along a < x x ' ( b  and yl=O, the 
general solutions for the displacements in the 
upper (yl:>0) and lower (y l<0)  regions are first 
obtained by solving the governing equation in 
Eq. (3) based on the Fourier integral transform 
method and those for the stresses are obtainable 
from the constitutive relations in Eq. (2). Upon 
imposing the traction equilibrium as in Eq. (5a) 
and introducing an unknown function as the 
derivative of the displacement jump across the 
crack surfaces, i.e., 

¢(x,)=c~xi[W~'(x~, + 0 ) - z d "  (x , , -0)] :  
(11) 

0<x~<~  

the displacement and stresses for the cracked 
full-plane in the (xl, y~) coordinates can be then 
given as 
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1 b t)tan -t t-x1 dt w~l'(xl, y , )=-2zr f  ~b(. (~T-~) (12a) 

_ l z~  fb y~(t) 
/'lxl2~I--(I) (Xl' Sh)--2~rJa y~+(t - -x l )  2 dt (12b) 

(1 ,  (XI, Yl) l/1 : b  ( t - - X l )  ¢ ( t )  rfy,., =9~.la ~ + ( t _ x l )  ~ dt (12c) 

where the function ~b is subjected to the following 
continuity and single-valuedness conditions out- 

side the crack line: 

~b(xl)----0; 0 < x l < a ,  b<xx< °° (13a) 

f b¢) ( x,) dx,=O (13b) 

For the second part of  the solution, the dis- 
placement and stresses in the (x, y) coordinates 
with the regularity condition in Eq. (4c) are 
readily obtained in terms of the Fourier integrals 

1 oo w~ ~) (x, y) = ~ f ~  A (s) e -Islx- iSyds (14a) 

r~N (x, y ) = - / ~  f°°l s IA(s)e-I~-~rds (lab) 
2zr J-~ 

y~ - - ~ . t _ ~  A(s)e-~'~*-~Yds (14c) 

where A(s )  is an arbitrary unknown function, s 
is the transform variable, and i = (--1) 1:2. 

The general solutions for the displacement and 
stress components in the nonhomogeneous inter- 
layer ( - h < x < 0  and /3#=0.0) can be expressed 

as 

1 ~ 2  
Wz(X, y) =~f~3~=l Bj(s)er'x-iSyds (15a) 

__ ]21c~x ~ 2 
Z'2XZ(X, y)--~f--~j~----1 B~(s) r~e . . . .  '~'ds (15b) 

~'e~i ( ~ ~ Bi(s) e':-~ds (15c) 

where Bs (s), j=  1, 2, are arbitrary unknown func- 
tions and rs(s), j = l ,  2, are given as 

fl :f12 2 ,2-- 2 ~/ "4 S (16) 

For the half-plane on the left-hand side ( x <  
- h  and /3=0.0), the general solutions for the 
displacement and stress components that satisfy 
the regularity condition in Eq. (4c) are also 
obtained as 

l oo 
w3(x, y) = 27r f -  C(s) e's'x- 'ds (17a) 

__ [13 ~ e lS lX_ iSyds  r , . (x ,  I s l C(s) (17b) 

/~i y) = - ~ - f .  s C(s) eLSlx-~Yds (17c) Z'3yz (X, 

where C(s) is an arbitrary unknown function. 
It is seen that the general solutions in the basic 

elasticity formulation involve four unknowns A 
(s), Bs(s),  j = l ,  2, and C(s) ,  in addition to 
the auxiliary function ~b. The interface condi- 
tions in Eqs. (4a) and (4b) can be applied to ex- 
press these unknowns in terms of ~, which then 
becomes the only unknown to be determined by 
using the crack surface condition in Eq. (5c). 

3. Der ivat ion  of  the Integral  

Equation 

In order to apply the interface conditions, the 
field components in Eqs. (9a) and (9b) defined 
in the (x, y) coordinates for the cracked half- 
plane are employed. The full-plane solutions in 
Eq. (12) obtained in the (xa, Y~) coordinates 
should thus be transformed such that 

Wl (X, y)  : W~ 1) (Xl, Yl) "~- W[ 2) (X, y )  (I 8a) 

rlxe(X, Y ) =  mr(lx),z, (xx, Yl) (18b) 
- n (x, ,  y , )  + (x ,  y )  

and from Eqs. (12), (14a), and (14b), together 
with the aid of  Eq. (6a), it can be shown that 

1 b 
W,(X, Y)=-2;rrfa ~b(t) tan-l( t--mx--nY) dt my-- nx 

(19a) 
1 Qo 

+ 2x f A(s) e-lSlx-' ds 

_ #~ (bh (,, V y - n t  jdt 
rl~z(x, y)-2~Ja v-,r)Lx2+yZ+tz~2t(mx+ny) 

t21 ® 2xf lslA(s)e-'"x-~'ds (19b) 

Upon substituting Eqs. (15), (17), and (19) 
into Eqs. (4a) and (4b), the expressions for the 
unknowns, A ( s ) ,  Bj(s) ,  j = l ,  2, and C(s),  can 
be obtained as 

A ( S ) -  (1"1-1 s ] ) ( Y z - I  S 1 ) ( e - r ' h - - e  -r'h) I(s) (20a) 
2sA(s) 
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B,(s) =l s l (r~-I  s I )e-r 'h i (s )  (20b) 
s d(s) 

B2(s) Is l  ( r , - I s l ) e  -''~ = I(s)  (20c) 
s z/(s) 

C ( s )  = t sl  (ra-r,)e-("+"-'*'~hl(s) (20d) 
s d ( s )  

where Z/(s) and I (s )  are given by 

M(s) = ( r , + l  s I)(r~-I s [ )e  - ' 'h (21) 
- ( r , - I  s I)(r~+l s I)e -''h 

i f ~ ¢  (t) e -~s~'m+~stndt (22) I (s) Ja 

Subsequently, the traction component, r,y,z,, 

in the (x,, Yl) coordinates for the cracked half- 

plane is written from Eq. (10b), with its second 

part transformed as 

ny,~,(xl, yt)--.(u_qy,~, (x,, y,)--nr~a~ (x, Y) (23) 
+__(27 (x, y) 

t'l/, L IyZ  

x = rnx~ -- nya, y = nx, + my, (24) 

so that the traction along the crack plane can be 

expressed from Eqs. (12c), (14b), and (14c) as 

2z  l im ay,z,(x,,  y,) 
/l, y,-+o 

f~ ¢(t) =ja ~ d t  

+ f : ( l s l  , - i s m ) A ( s ) e  ('s"+~"'X'ds; 

0 < x ~ < o o  

(25) 

where the first term on the r ight-hand side is the 

integral with a Cauchy singular kernel 1 / ( t - - xa ) .  

After making use of  the expression for A (s) in 

Eq. (20a), the crack surface condition in Eq. (5c) 

can be derived as a singular integral equation 

f b e ( t )  d t + f b k ( x , ,  t ) ¢ ( t ) d t  

= 2 X / ( x , ) ;  a < x l < b  
/11 

(26) 

where the kernel k(x~, t) is obtained as 

k(xm, t) = fo=[m cos n s ( t - x , )  

- n  sin n s ( t - x , )  ]A(s)  e-~"*X°mds 
(27a) 

(e -~#~+4s'- 1) 
A(s)=2s(e_hB~ar~_l)_v,,l~+4fl(e_h~+l ) (27b) 

Now, before proceeding with the solution of 

the integral equation, it may be worthwhile to 

consider the three particular cases. The first is the 

case of tic=constant and h - *  co, for which the 

problem would be that of a cracked homogeneous 

half-plane bonded to a nonhomogeneous half- 

plane. It can then be shown that the function A 

(s) is expressed as 

A(s) - 2s-~ / t iZ+4s2  +/3 (28) 
2s + ~ t i2+4s  z - t i  

and in the second particular case of ,u3/,ul = 

constant and h---' 0.0 or [ ti I --~ co, the problem 

would reduce to that of two bonded half-planes 

that are piecewise homogenous with the shear 

moduli #, and ~ .  Upon noting the following 

limiting behavior 

lira h,/ti'+4s2=-ln(~]lim , / 1 + 4 ( s )  2 
IBI-® \ /Zl/l#l-** V ~ (29) 

the function A(s) in Eq. (27b) is simplified as 

A(s)  = A o = / ~ ' - / ~  (30) / I , + ~  

and the corresponding kernel in Eq. (27a) can be 

evaluated in closed form: 

. r m 2 ( t + x , ) - - n 2 ( t - - x , )  
k(x~, t )=Aol  ~ 2 ~ n Z ( t _ x , ) 2 1  (31) 

which is identical to the one previously obtained 

by Bassani and Erdogan (1979). 

In the other limiting case of ~ / / z , = c o n s t a n t  

and h---. co (or t i c=cons t an t  and h---' 0.0), it 

is obvious from Eqs. (27a) and (27b) that the 

kernel k(xx, t) would vanish and the integral 

equation in Eq. (26) degenerates to that for an 

infinite homogenous plane with a line crack, 

where the closed form solution is obtainable. To 

be further pointed out is that the functions A(s)  
in Eqs. (27b), (28), and (30) are the ones that 

can be obtained when the problems are for- 

mulated for the special case of a crack perpen- 
dicular to the bonded interface. Hence, the effect 

of the crack obliquity other than 0 = 0  ° is re- 
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flected by virtue of  the trigonometric functions 

involved in Eq. (27a). 

4. The Solution and Stress Intensity 
Factors 

The integrand of the kernel in Eq. (27a) retains 

the exponentially decaying behavior as the vari- 

able s becomes large, although when 0 ~ 90 ° or 

(td-x~)---* 0.0, the convergence rate of the related 

improper integral is rendered relatively shower 

than otherwise. When the elastic properties are 

continuous and not necessarily differentiable near 

and at the crack tip, the Cauchy singular kernel in 

Eq. (26) solely contributes to the dominant part 

of the integral equation for d = 0 . 0  as well as d > 

0.0. Consequently, the near- t ip stress field would 

be characterized by the inverse square-root  sing- 

ularity, independent of the crack orientation as 

described by Erdogan et al. (1991) and Ozturk 

and Erdogan (1993) for the limiting crack angles 

0 = 0  ° and 0 = 9 0  °, respectively. These notable 

features are in contrast to the dependence of the 

order of crack-t ip stress singularity on both the 

elastic constants of the constituents and the angle 

at which the crack tip intersects the interface in 

piecewise homogeneous bonded media (Bassani 

and Erdogan, 1979; Kondo, 1992). 

The auxiliary function ¢ ( t )  can therefore be 

expressed as (Muskhelishvili, 1953) 

g( t )  
¢ ( t ) - -  , a < t < b  (32) 

, ~ ( t - a )  ( b - t )  

where g( t )  is an unknown function bounded and 

nonzero at t = a  and t=b.  In the normalized 

interval 

{xa~ e}  4 I < ( ~ ,  ~ )<1  (33) 
t I = ~  { z/ 2 

b - a  b+a 

the solution to the integral equation can be ex- 

panded into the series of the Chebyshev poly- 

nomial of the first kind Tn as 

_ 1 ~2 c .T . ( r l )  ; I r / l<  1 (34) ¢ ( t ) = ¢ ( , 1 )  ~ . = 0  

where c~, n_>O, are the unknown coefficients. It is 

noted that c0=O and the orthogonality for T~ can 

be used to satisfy the single-valuedness condition 

in Eq. (13b). 

Upon substituting Eqs. (32) (34) into Eq. 

(26), truncating the series at n = N ,  and using the 

integral formula of the Chebyshev polynomial  

(Abramowitz and Stegun, 1972), the integral eq- 

uation is regularized as 

.=1 2 ./-1 
(35) 

= 27r/(~).  [ $1<1 
/11 

where Un is the Chebyshev polynomial  of the 

second kind. To solve the above functional eq- 

uations, the zeros of TN (~) are chosen as a set of 

collocation points which are concentrated near 

the ends $=--+1 : 

T~ (~j) =0 ,  

cos- '~3 /r 2 j - -1  j = l ,  2, - N (36) 
2 N ' ' "  

and the integral equation can be recast into a 

system of linear algebraic equations for cn, l<- 

n < N ,  by evaluating the equations in Eq. (35) at 

N s t a t i o n  points e~, 1 <j<-N. 

After the values of c,,, l<_n<_N, are deter- 

mined, the integral equation in Eq. (26) provides 

the traction component, rly,zl(xl, 0), outside as 

well as inside the crack region. As a result, the 

mode III stress intensity factors at the crack tips, 

a and b, can be defined and evaluated in terms of 

the solution to the integral equation as 

Klii(a)  = l im ~/2(a--xt)  rly,z,(x,, 0) 
x l ~ a  

(37a) 
_/,1 (-1/"c. ; Xl<a 

2 ¥ 2 .=~ 

~ i i ( b )  = lira , / 2 ( x l - b )  r~ylzl(x~, 0) 
X l ~ b  + 

(37b) 
_ 

2 ¥ 2 n=l Cn ; x t>b  

where due to the continuity of shear moduli 

through the graded nonhomogeneous interlayer, 

the defined stress intensity factors are equally 

valid even when the crack terminates at the nom- 

inal interface with the interlayer. 

5. Numerical Resnits and Discussion 

The integral equation in Eq. (26) is solved to 
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provide the values of the mode Ill stress intensity 

factors for various combinations of geometric (0, 

h /2c ,  d / c )  and material (/~/~1) parameters of 

the bonded media with a graded nonhomogen- 

eous interlayer. Both the uniform crack surface 

traction and the remote stresses of anti-plane 

shear type are considered as the external loadings. 

The kernel k (x l ,  t) in Eq. (27a) with a semi- 

infinite integration interval is evaluated by using 

the Gauss-Legendre quadrature formula, while 

the integral in Eq. (35) is evaluated based on 

the Gauss-Chebyshev quadrature formula (Davis 

and Rabinowitz, 1984). No more than thirty-term 

expansion in Eqs. (35) and (36) suffices in ob- 

taining the solution with a desired degree of acc- 

uracy for the geometric and material configura- 

tions considered in this study. 

To confirm the validity of the numerical results 

to be examined henceforth, the stress intensity 

factors for two special crack orientations in (Er- 

dogan et al., 1991 ; Ozturk and Erdogan, 1993) 

are reproduced subjected to the uniform traction 

on the crack surfaces as f ( x l )  = - - t o  in Eq. (5c). 

One is for a crack at a right angle to the interlayer 

as 0 = 0  ° and d/c=O.O, together with the results 

plotted in Fig. 2 as a function of interlayer thick- 

ness h / 2 c  for the two different material com- 

binations. The other one is for an interface crack 

as 8 = 9 0  ° and d/c=O.O, the results of which are 

shown in Fig. 3 as a function of shear moduli 

ratios /za//t~ for some values of h /2c .  It is seen 

from these figures that the current values of the 

stress intensity factors are in excellent agreement 

with those reported in literature that are now 

added by solid circles. 

The stress intensity factors for the arbitrarily 

oriented crack loaded by the uniform traction on 

its surfaces are next presented in Figs. 4-6. With 

the location and size of the crack specified as d~ 

c = 0 .0  and h /2c=0 .5 ,  Figure 4 illustrates the 

results as a function of the crack orientation angle 

0 for different shear moduli ratios /z3//h. As 

expected, the values of the stress intensity factors 

increase with decreasing ,uJ/zx. It is then observed 

that the crack tip a closer to the interlayer is more 

sensitive to the variation of ~//z~, while the crack 

tip b is affected by the angle 0 to a larger extent. 

In addition to such a generic trend, the stress 

intensity factors are being enlarged with increas- 

ing O when the crack is in the stiffer constituent 

(/~//-tl < 1.0), with the implication of higher like- 

lihood of brittle fracture for the greater crack 

obliquity. The opposite response may be prevail- 

ing when pa/,u~ > 1.0 such that the fracture resist- 

ance is enhanced by the nearby stiffer material for 

the greater O. 

2.0 

1.8 - -  : Km,(a~lKo 
_ _ _ : K . , t b ) / K  o 

1.6 ~. • : Erdogan et al. (1991) 

T~ 0 = 0  °,  d / c = O . O  
1.4 ~ / p ~ / p , = 0 . 2 5  ~ 

1.0 

014 ~ 
0.0 0.5 1 .O 1.5 2.0 2.5 

hl2c 

Fig. 2 Variations of stress intensity factors K.t/Ko 
for a crack perpendicular to the graded 
interlayer as a function of h/2c under uni- 
form crack surface traction f ( x l ) = - - t o  for 
different values of ,us//otl ( 0 : 0  °, d/c=O.O, 
and Ko = CoC ]lz) 
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Variations of stress intensity factors Km/Ko 
for a crack along the interface with the graded 
interlayer as a function of ~//21 under uni- 
form crack surface traction f ( x [ ) = - - t o  for 
different values of h/2c (0=90 °, d/c=O.O, 
and Ko = roc ~/z) 
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Variations of stress intensity factors (a) KIII 
(a)/Ko and (b) Km(b)/Ko versus crack 

orientation angle 0 under uniform crack sur- 

face traction f(xl) = - - t o  for different values 

of ~ / ~  (d/c=O.O, h/2c=0.5, and Ko=ro 
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Fig. 5 Variations of stress intensity factors (a) Kill 
( a ) /Ko  and (b) ~ii(b)/Ko versus crack 

orientation angle 0 under uniform crack sur- 

face traction f(xt) = - - t o  for different values 

of d/c and /~//z~ (h/2c=0.5 and Ko:ro 
C 1/2) 

The effect of  the crack locat ion d/c  in con- 

junct ion with that of  the crack or ientat ion is 

provided in Fig. 5 for the fixed interlayer thick- 

ness as h/2c=0.5. In this case, the stress intensity 

factors for /zs//Zl=5.0 decrease as the crack is 

located closer to the interface with the interlayer, 

due to the more pronounced  constraints by the 

nearby stiffer constituent. The reverse behavior  

may persist for ~ / ,ux=0 .2 .  Also observed is that 

the greater is the crack distance d/c  from the 

interlayer, the less sensitive are the values o f  the 

stress intensity factors to the variat ions of  crack 

angle 0 and material  parameter /~//zl  as well. 

With the crack located at d/c=0.5 from the 

C o p y r i g h t  ( C )  2 0 0 3  N u r i M e d i a  C o . ,  L t d .  

interlayer, the effect of  the interlayer thickness h~ 
2c  on the behavior  of  the arbitrari ly oriented 

crack is presented in Fig. 6. To  be noted from this 

figure is that an increase in h/2c results in some 

reduct ion in the magnitude o f  the stress intensity 

factors tbr /-t3/,ut=0.2, whereas the reverse re- 

sponse is observed for ~ / / z t = 5 . 0 .  Aforemen-  

t ioned feature with the var ia t ion o f  the interlayer 

thickness, including the l imiting case of  h/2c= 
0.0, indicates that the presence of  the graded 

interlayer of  greater thickness would  play the 

more effective role of  shielding the crack that 

exists in the stiffer side of  the bonded materials. If 

the thickness ratio h/2c were further increased, 
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Fig. 6 Variations of stress intensity factors (a) ffm 

(a)/Ko and (b) ~ u ( b ) / K o  versus crack 

orientation angle 0 under uniform crack sur- 

face traction f ( x l )  = - - t o  for different values 

of h/2c and /~/,ua (d /c=0.5  and Ko=ro 
C 1/2) 

the influence of  0 would  be insignificant such that 

the solutions would tend to those for a crack in 

the infinite homogeneous  plane. 

In the sequel, the obl ique  crack in the bonded 

materials subjected to far-field an t i -p lane  shear 

loading (see Fig. 1) is considered. With the equi- 

valent crack surface traction given by Eq. (8), the 

stress intensity factors owing to such remote 

loading can readily be evaluated by using those 

obtained under the condi t ion  of  uniform traction 

on the crack surfaces as 

K m =  f c ( m r F - n r o )  Kr (38) 

where Kr refers to the normalized stress intensity 
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0.5, and Ko=roC l/z) 
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different values of/~//z~ (d/c=O.O, h/2c = 
0.5, and Ko = rFc 1/2) 

Fig. 8 

factor tbr the uniform crack surface traction. 

The variat ions of  corresponding stress intensity 

factors are plotted in Figs. 7-9 as a function of  the 

crack orientat ion angle O, for the crack location 

and interlayer thickness fixed as d/c=O.O and h /  

2 c = 0 . 5 .  As shown in Fig. 7, with the loading 

being imposed as z'~':¢:O and z3°°=0, j =  1, 2, 3, it 

is clear from the geometry o f  the bonded media 

that such an external load would result in the zero 

value of  the stress intensity factors when 0 = 0  ° 

and their magnitudes increase as 0 increases. 
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Variations of stress intensity factors Knt/Ko 
versus crack orientation angle 0 under remotc 
loading of to#:0 and rTq=0, j = l ,  2, 3, (a) 
~//2~=0.2 and (b) ~/ / t l=5.0  for different 

values of load ratio Ao= rY/rT(d/c=O.O, h~ 
2c=0.5, and Ko = r~'c x/z) 

Figure 8 predicts the somewhat different behavior 

when t o = 0  and rT~0,  j = l ,  2, 3. Specifically, 

the values of the stress intensity factors decrease 

as 0 increases, approaching zero when the crack is 

becoming an interracial one as 0 = 9 0  °. For the 

loading condition of ro=~0 and r ~ 0 ,  j =  1, 2, 3, 

the results are illustrated in Figs. 9(a) and 9(b) 

for /z3//_tl=0.2 and /-t3//-tl=5.0, respectively. In 

order to prescribe the remote loading condition in 

a quantitative manner, it is assumed that ro=,~or~' 

where /1o is a parameter to measure the degree of 
load ratio. It then appears that the effect of the 

load ratio /lo becomes more pronounced for the 

greater 0 and more noteworthy for the crack in 

the stiffer constituent as ,uJ/zl=0.2. Of particular 

interest in these figures is that for /lo>0.0, the 

values of the stress intensity factors change sign as 

the crack orientation angle 0 increases, implying 

that there may exist certain crack obliquities that 

render the mode Ill crack free from the sing- 

ularity, i.e. O=cot-X,~o, for any given material 

combinations. 

6. Summary and Conclusions 

The anti-plane shear problem of bonded elastic 

half-planes with a crack at an arbitrary angle to 

the graded nonhomogeneous interlayer has been 

investigated. Formulation of the crack problem 

ended up with the derivation of a Cauchy-type 

singular integral equation, with the correspond- 

ing mode II1 stress intensity factors evaluated in 

terms of the solution to the integral equation. In 

the numerical results, parametric studies were 

conducted with the following conclusions : 

(I) For an arbitrarily oriented crack under the 

uniform crack surface traction, the crack tip away 

from the interlayer is more sensitive to the varia- 

tion of the crack angle, whereas the crack tip 

closer to the interlayer is affected by the shear 

moduli ratios to a greater extent than the other 

crack tip. 
(2) The stress intensities are enlarged with 

increasing 0 when the crack is in the stiffer con- 

stituent, with the implication that the likelihood 

of brittle fracture is higher for the crack located 

parallel to or along the interface with the in- 

terlayer. 
(3) For the crack in the less stiff constituent, 

the severity of crack-tip stress state becomes in- 

tensified as the thickness of the interlayer or the 

crack-tip distance from the interlayer increases. 

When the crack is in the stiffer constituent such 

that the adjacent uncracked constituent is rela- 

tively compliant, the opposite behavior prevails. 

(4) Under the far-field anti-plane shear load- 

ing condition prescribed in terms of the load 

ratio, the values of the mode I11 stress intensity 

factors vanish at certain crack orientation angle 

without regard to the material combinations. 
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